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Abstract. The frequency-dependent toroid dipole polatizability y;=) (@) which characterizes.
the linear response of a system to a conduction and/or displacement time-dependent external
corrent is caleulated exactly in the tridimensional charged oscillator model. Two frequencies
of resonance are obtained. One of them (wpe = 3@y, @y being the frequency of the
oscillator) individualizes the toroid dipole polarizability since none of the other (usual) dipole
and quadrupole electric and magnetic polarizabiiities resonates at this frequency, Comparing the
static result 1"!11 (& == 0) with the static electric and magnetic quadmupole polarizabilities one can
see that the toroid effects appear to be of the same order of magnitude as the magnetic ones and
that they are very small with respect to the electric effects, but their relative importance increases
proportional with fay / nrge? (mg being the mass of the oscillator). For elementary particles
{particularly at the subbadronic level) induced toroid moments might become predotninant,

1. Introduction

In the framework of classical electromagnetism, the discovery of a family of toroid multipole
moments [1,2] which are independent from the other (usual) electric and magnetic ones
and cannot be reduced to those [1,2] was of special importance. The toroid dipole moment
(known in the field of elementary particles as Zeldovich’s ‘anapole’) is the first element of
this family. The toroid moments are currently being studied in a variety of contexts [1-8].

The intrinsic toroid moments of elementary quantum systems are ruled out by invariance
under either parity or time reversal. Consequently, the intrinsic toroid moments of such
objects should actuaily be extremely small, being determined by parity or time reversal
violating interactions. Nevertheless, the effects related to toroid moments have been
thecretically investigated in atomic [3] and nuclear [4] physics. In connection with toroid
moments the fact that there is a class of particles, the Majorana fermions, currently occurring
in connection with various aspects of neutrino physics (double 8-decay, neutrino oscillation,
etc) as well as in grand unified and supersymmetric theories, whose possible electromagnetic
structure is required (by CPT invariance only) to consist exclusively of toroid moments
and distribution [5] (all other usual electric and magnetic moments and distributions are
forbidden [5]) must be mentioned.

While the intrinsic toroid moments of elementary quantum systems are ruled out by the
discrete symmetries, in general there is nothing to prevent the appearance in such systems
of induced toroid moments and distribution when external fields are present [6]. The size
of such induced toroid moments is measured by toroid polarizabilities [6-8].
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2, Interaction of the toroid dipole moment with the external field

‘When a system of charges and currents (specified by p(r, z) and j(r, t)} interacts with the
external electromagnetic field E**, H** described by the potentials ¢®™(», 1), A (r, 1),
in the interaction energy

W) = f po(r, DP™(r, ) &®r — 1 f i, YA, ) &r 1)

alongside the usual electric and magnetic dipole and higher multipole contributions, there
are also contributions from the interaction of the toroid moments with the external field
[1,2]. The toroid dipole term is [1,2]

W () Teroid dipole = —T BV x H™(, £)]r=0, _
= -T®)[@nr/)T™(r, ) + (1/e) D™ (T, )p=0s @)

where J*(r, ¢) and (47) "1 D™!(r, t) are the external conduction and displacement currents,
and

T() = ——-f (ol - 50, 8)] — 202 (r, D} & ®

is the toroid dipole moment {2].

In the quantum case, as a result of the particular interaction from equation (2}, according
to the well known non-stationary perturbation rules, a toroid dipole moment (characterized
by close toroidal or eight-like currents) will be induced in the system [8] (irrespective of
whether or not the system possesses a non-zero intrinsic one), It has the following Fourier
components:

Tiinduoed(w) — Z ylj’ W)V x H“t(m)]j 4)
i)

where y/j(w) is the dynamic (i.e. frequency, o dependent) toroid dipole polarizability [6]
(see also [7]) of the gquantum system {on the arbitrary state |p} of E, energy):

vl (@) =1 f ) pIT (), T;OIp) dr

_z[ (pITnKnlTip) | _(pITInHn|Tilp) ]
- E,— E,—hw—i¢ E,—E,+ho+ie

&)

(the sum extends over the entire unperturbed spectrum whether discrete or continuous, E,
being the eigenvalues of the unperturbed Hamiltonian).

As shown in [6] the toroid polarizabilities cannot be re-expressed in terms of the usual
electric and magnetic multipole polarizabilities, so they are new, independent characteristics
of the system.

The purpose of this paper is to compare the toroid dipole polarizability of a quantum
system assumed to have an energy spectrum of a tridimensional harmonic oscillator (since
this is the most used medel in theoretical physics) with the other electric and magnetic
polarizabilities which have the same dimensions and are involved with the same importance
in the description of many different eﬂects {such as Compton scattering and van der Waals
forces).
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3. Tridimensional charged oscillator in an external field configuration with ¥V x H**
homogeneous

The non-relativistic quantum mechanical Hamiltonian describing the interaction of a spatial
charged oscillator with an external field configuration for which V x H** is homogeneous
in space (r independent) but generally time-dependent has the form:

- 2
RO = 5elP = @/ AT, 0 + 25002 ©)

where P = —iAiV and g, mo denote the charge and the mass of the oscillator, while the
vector potential AT (r, £) is chosen to be as in [9] (see also [7]):

AP, 1) = (1/10)(xx; — 2r28;)[V x HE());. Q)
The Hamiltonian from equation (6) can be expressed in the form
H(t) = Ho + Horoid dipole(?) + HL@) _ ‘ 8)
with
Ho = e + 5 7 )
) . 4
Hrorsid aipote(£) = —iA‘”(r, DP =V x HOIT = ——Jg®OT  (10),
2
HL() = 200 ( =3r¥x;x + 4rt8) [V x HEOLIV x H™ ()], . a4y

‘Hp is the unperturbed Hamiltonian for the harmonic oscillator. Hrewid dipote and Hy (a
Langevin-type interaction, arising from the term quadratic in A7? and representing a toroid
analogue [9] of the usual part of the Hamiltonian responsible for the Langevin diamagnetism)
may be viewed as perturbations. In equation (10) the one—partlcle operator for the toroid
dipole moment, from equation (3) is [2] )

Z( 285 + xox0) Py - (12)

T =
‘ 10m0

while in equation (10) J5t denotes the total external current (external conduction and
displacement currents).

The exact calculus of the toroid dipole polarizability from equation (5) in the case of
an anisotropic charged tridimensional oscillator in an arbitrary state described by quantum
numbers (p; pa2ps), corresponding to the energy level

Ep g = (p1 + 1/2}aw1 + (p2 + 1/2hwy + (ps + 1/ 2Rw; 13)

together with particular forms of this polarizability will be presented in detail elsewhere
[10]. The non-diagonal elements of y}'/*™(w) vanish. For an isotropic oscillator
(@ = wp = w3 = wp) the expression for Y T w) is (v P (w) and v PP (@) can
be obtained from y{}'"" (@) by circular permutation of the indices 1, 2, 3)

Py = g*h> [ 3[36€] + 4(e3 + ) + 16€1(e2 + €3) + 211
m - 1600m3c? 9? — w?
125, + 28(52 + €2) + 208¢; (62 + ;) + 1286265 — 53 (14
Wk~ &?

with € = p; + 1/2.
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The components of the frequency-dependent vector amplitude of the toroid dipole
moment induced in the oscillator T9%°* will be given by

s [3(16e,? +4, € + 16eg; +21)

T_induced ( w) =
i

1600m3c2 9wi — w?
64e + 80¢e; — 96€2 —36, ¢ — 53
i wl — wz Ek k ] (V ® cht)i (15)
with € = €1 + &2 + €3.
The scalar toroid dipole polarizability
yleZF'! (w) — 1/3 E yPIPZP'i (L'D) i (16)

takes on the following form:
qn* [3(16& +28Y €2+ 63) 27262 — 2043, €2 — 159 an
4800m3c? ’

For @ = 0 the dynamic tensor and scalar toroid dipole polarizabilities turn in their
correspondent static expressions:

Mpzp3 ) -
AP w) =
et Ywi — w? wi — w?

232

g°h
V,‘I{)Imm (Cz) == O) W(QGE -+ 12366; — 136E —-52 E Ek 69) (18)

mpp g°r
gy — ) = 4166 — 292 "2 — 207 19
Vi @=0)= 7200m0c2w0( Ze" ) (19

These results can be particularized for a ground-state oscillator (p; = p2 = p3 = Q).
Because of the spherical symmetry

Yk (@) = v (@) (20)
and the dynamic toroid dipole polarizability of the ground-state oscillator from equation (17)
is
222
wo,.__ 9P 6 5 _
n=1(@) = 80mjc? (9@% - w? + Wk — wz) ’ ‘ @b
The static value has the simple form:
17q%R%
000
00w = 0) = —pmme. i : 22
Y=t (@ =0) 240m3c2w} @)

The Langevin-type part of the interaction Hamiltonian 7, from equation (11} restricted
to the case in which ¥V x H®® is not only homogeneous but also constant in time
[(V x H*)©] induces the energy shift

AE, = {p|H.|p)

q

1600m czwg' 2

2;-12
(326 — 24eg; — 12 + 16 Z &+ 27) [(V x H*)O%.

(23)
Writing the energy shift as
AE, = =Ly PPV x H™HE[(V x H*, (24)
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one finds the following Langevin-type contribution to the toroid dipole tensor polarizability
(whose non-zero components are only the diagonal ones) and to the corresponding scalar
one;

212
Lopipeps _ a"k 2 - 12¢2 > et
J‘f“- 172 W(32& - 2466[ - 12€f + 16 - é-.‘: +27) (25)
L 3q2h2
yl!:{’lePa - —W 862+4 Ek €f+9 (2-6)

‘while the ‘contact’ (Langevin-type) part of the toreid dipole moment induced as a result of
interaction in equation (11) is:

T = —3AE,/8[(V x H™HOY, = yLPnP (7 « Hete)),, @7
For a (spherical symmetric) ground-state equation (26) turns into

L.O0C0 94252

S e, 28
V=i 80m3c2ewd 28)

The total toroid dipole moment induced in the oscillator will be given by the sum of
the moments induced as a result of the perturbations in equations (10) and (11). For a time-
independent external perturbation it is characterized by the total toroid dipole polarizability

252
Yii ””’“”(w 0) = p'PP(w = 0) + y; PP = _48:132%% (4ee,— -2 - 2Zk: - 3)
: 29)
Vel PP (1 = 0) = pif*P (0 = 0) + yof PP = il (452 ~8) - 9). (30)
144m3ciw? p

For pj = p; = p3y = 0 (ground-state oscillator)

q2h2
24m(3]czco(2) ’

e = 0) = - (31

4, Comparison between induced toroid effects and the usual electric and magnetic
ones

In connection with the elastic scatfering of low-energy photons on an arbitrary system
(Compton scattering), as shown in [8, 8] (see also [7]), unlike the usual (static) electric and
magnetic dipole (i = 1) polarizabilities oj=;{w == 0) and =1 (@ = 0) which establish the
angular structure of the amplitude to the second order in the light frequency w, the static
torcid dipole polarizability 3= («> = 0) enters only at the beginning with the next relevant
(fourth) w order together with the usual {also static) electric and magnetic quadrupole
polarizabilities oy (@w = 0), fi=z(e» = 0} and the derivative of the usual (dynamic) electric
dipole polarizability oy—1/{(w = 0) = [doy—1(@)/dw?],=0 and also with the Langevin-type
(contact) magnetic and toroid polarizabilities.

For comparison we give the expressions for the electric and magnetic polarizabilities
of the same quantum system we used to obtain the toroid polarizability (i.e. the charged
tridimensional oscillator) maintaining the same notation we used previously.
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The dynamic electric dipole and quadrupole polarizabilities for an arbitrary quantum
system whose energy spectrum is that of a tridimensional oscillator are:

piaps (4 9 . ]
2he
o () = gL (33)

The low-frequency limit gives the static electric dipole and quadrupole polarizabilities
and the derivative of the dynamic electric dipole polarizability:

w?
ol 2P () = af PP (o = ) + S = 0) + - (34)
pLpap g’
PP (g — () = 35
e () ) mocof‘; (35}
g%
IFLPZPJ,(GJ — 0) — Cz[dﬂmmm (w)/de]w=o — 0w4 (36)
g*he
PP
o, {w=0)= G7)
2miwd’

The dynamic magnetic dipole polarizability for the isotropic oscillator £, PAPEP3 ()
vanishes, but there is 2 Langevin-type one {responsible for the Langevin d1amagnetlsm)
which has a non-vanishing form:

2
L.pipaps g-he 38
ﬁ =1 Gm%woca' ( )

The dynamic magnetic quadrupole polarizability and the comresponding total static one
(including the Langevin-type piece} are:

g 262 =23, ¢ -3

PLP2P3 39
BLEP@) = s = = (39)
ﬂTszm(w 0) = ___.Eih._z__. 4e2 _BZG - 13 {40)

20m3c2a? ¢

By comparison with /.77 (), af25*" (@) and B:5*P*(w) in equations (32), (33) and
(39) it can be seen that pi_ “"“"(w) in equanon (17) has an additional resonance frequency
Wres = 3axyg (wy being the frequency of the oscillator). This resonance frequency can only
appear at the beginning with the octupole polarizability in the electric case {we; = 3wg is a
resonance frequency for ofon41 with n 2 1), but this polarizability does not have the same
dimension and importance as af!}*"* (@), BZ7*™ (w) and y7'7*7 (w) (it contains in addition
the square of the system’s d1men51on)

So, the dynamic toroid dipole polarizability is the only one of the dipole and quadrupole
classes of polarizabilities which has a resonance frequency wy.. = 3wy. Consequently, for an
external field interaction whose frequency is close to 3wp the induced toroid dipole moments
and structure {characterized by the ability of the constituent charges of the system to move
on eight-like orbits) become predominant over the other induced electric and magnetic
moments. This could lead to new effects.

In the static case a comparison between 2" (w = 0), &5 (@ = 0), /27" 1w = 0)

and S7°5'"*P (o = () can be made. Using equations (30), (36), (37) and (40} the following
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exact formulae are obtained:

T mpzm ‘ N
Vi (= O) 1 By &2 .
PP —0) = 14 (mocz) (4 N 826" B 9) , @

Ve PP =0 _ 1 (4e®— 85 et —

P TPw=0) 72 (m) e “2)
y_"’“"m(co 0) 5 462 83 € — )
BLEPEPs (g = 0) 36 4¢ —83 & —13 )

For hay/ moc? <« 1 one can see that the effects due to the induced toroid moments
appear to be very small compared with those of the cortesponding usual electric ones
(although they increase with the oscillator’s energy) and of the same order of magnitude
as those telated to the induced quadrupole magnetic moments. The same conclusion arises
when considering a (non-relativistic, spinless, ground-state) hydrogen-like atom [7]. This
could be one of the reasons why induced toroid moments have so far been disregarded in
atomic physics.

In the field of elementary particles physics a similar comparative analysis can be made
considering a typical example of hadron, the (charged) pion [6,11]. (The example of the
charged pion is not only of pure academic interest. The Compton effect on the charged pion
has already been experimentally observed and studied and the electric dipole polatizability
of the charged pion has been experimentally extracted in two different experiments [12].)

In [6] an order of magnitude estimate of the static toroid dipole polarizability of x* has
been obtained (by evaluating the A; (1270 MeV) meson resonance contribution to V:-*I (w=
0) in terms of the’ experlmentally known radiative width T'(A; — 7y) =~ 0.6 MeV) with
the result {(see also [7]) y 1(a) =0) ~1.2 >< 107% fm®. Under the same aproximations
it has been found 6] (see also [7]) that oe,_ few = 0) ~ 0.8 x 107° fmn’. The static
electnc and magnenc quadrupole polanzablhty of 7% are expected to be of the order [11]
o (@ = 0) ~ A5 (@ = 0) ~ 1075 fm®, Tt has been found that

VEe=0 yEe=0 yEe=0
o =0) oH@=0) Ba@=0)

The result is in sharp contrast to the corresponding one from the atomic physics. For
hadrons, the toroid polarizabilities (and the related effects) are expected to be of the same
order of magnitude as the usual electric and magnetic ones (of one order of multipolarity
higher).

Equations (41)—(43} can provide a theoretical explanation for the conclusion [6, 7] that
the more ‘elementary’ the object is (or the higher are the characteristic excitation energies
of the system) the better it responds to an external (conduction and/or displacement) current
V x H® rather than to the electric E* and magnetic H** fields directly, because the
importance of the induced toroid effects increases (in the oscillator model) with E/moc?.

Toward smaller distances (at the subhadronic level) the induced toroid effects might
increase further and become predominant over the usuval (induced) electric ones. One
_possible explanation may be the fact that for a classical toroidal current (of large and
small radii of the toroidal solenoid Rr, rr} with N turns of winding and a current intensity
I, the classical toroid dipole moment is [2, 6]

NIVt
dme

(44)

(45)

Trors = 10
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where Vr is the volume of the torus and n is the unit vector along the axis of the toroid. The
induced toroid moment increases on account of the large number of turns in the winding, so
the systems which have filiform structure (strings) could have a large toroid polarizability
[6,71.

Because the single possible intrinsic electromagnetic structure of the Majorana fermions
is required to consist only of toroid moments and distribution [5], these particles would
probably have large toroid polarizabilities just as macroscopic substances composed of polar
molecules (i.e. molecules with an intrinsic electric dipole moment} would generally have a
latge electric polarizability {7]. For the same reason, atoms, molecules and nuclei having
intrinsic toroid moments (as those in [3,4]) could possess important toroid polarizabilities.

5. Temperature’s influence on the induced toroid effects

If the oscillator is in thermodynamic equilibrium, the mean toroid dipole polarizabilities can
be calculated with the Gibbs distribution. The result for the dynamic polarizability, from
equation (17), has the following dependence on the system’s temperature (7):

g*n? [3(3 coth?fia/2kT + 1) Y coth? icag /24T — 7}

V=t (@) = (46)

160m3c? 2 — w?

92 —~ w? @
(k denotes Boltzmann’s constant). For @ = 0 the static form of the mean toroid dipole
polarizability is obtained:

2.2 .
S , e
—1{w = 0) = ————={ 27coth* — — 10]. 47
=@ =0) 240mgc2co§_( _CO 2kT ) “n
Adding the mean Langevin-type contribution obtained from equation (26),
—_ 9g%h* e
Lo=- oth? 48
"SR 2T “8)
at y1-){eo = 0) from equation (47) one gets the mean toroid dipole polarizability:
—_— 2&2
T =0 = _q—_ 49
}’[=1 (CU ) 24mgczw% ( )

It can be seen that VzT=1 (w0 = 0) has no dependence on temperature and the mean total
toroid dipole moment induced in the system by an external field configuration which is
constant in time has no classical analogue.

For a time-dependent external interaction (@ 7% 0) and for a temperature T 3> Awo/k
equation (46) may be written in a form that cancels the #? factor and permits a classical
interpretation:

23272
— T 9 17 )
— — * 50
Vi=1(@) 40mic (9(»% — wf — w? )

A comparison with the other dynamic electric and magnetic polarizabilities can also
be made. Since oy_;(w) has no dependence on the quantum numbers py, pa, p3 it has
no dependence on temperature either. The (dynamic) electric and magnetic quadrupole
polarizabilities have the following mean values:

[— BqZﬁ 71(1)0
= = coth—— : 51
=) miwo(dwf — w?) T Gl
252
N q*h 5 Ry )
— = —1].
Preal@) 2mic @t — %) (“’th 2%T (52)
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For T > huwy/k equations (51) and (52) turn into

P qukT
) = —m—————
@ (53)
- 2q2k2T2
Bi=z(w) IR =D (54)

So, from equations (50) and (53), even if the (tlme-dependent) induced toroid dlpole
moments are smaller than the quadrupole electric ones, their relative importance, however,
increases with 7. Comparing the dynamic toroid effects with the quadrupole magnetic ones
in equation (54) one can see that they have the same temperature dependence.’

Analysing equations (50), (53) and (54) one can see that the mean polarizabilities
maintain the same resonance frequencies as those which characterize an arbitrary state
system, in equations (17), (33) and (39).

For a static external field, a comparison between induced toroid, eIectnc and magnetic
effects leads to

—_— Fuwg
Vi (@ = 0)/ey=1/{0 =0) = o (mocz) : (35)
e T 1 ﬁwo ﬁzmz
T — — ) — ~ | 0
Yz (@ = O/ e (@ = O) = — g o 2T = (36mgc2kT) (36)
(Than/k)
¥y (@ = 0)/fl,(0=0) = —3. I - (57)

" 6. Conclusions

Although the induced static toroid effects can hardly be highlighted in atomic and solid
state physics (this could be one of the reasons for neglecting the toroid moments in these
domains), the dynamic ones can be observed on account of their different dependence on
the external field frequency (in the charged oscillator model an additional specific resonance
frequency appears).

While for atoms (length scale 10~® c¢m) the static toroid polarizabilities are generally
negligible quantities, for hadrons (length scale 1071 cm) they can no longer be neglected as
one expects them to be of the same order of magnitude as the corresponding usual electric
and magnetic ones. For more ‘elementary’ objects the importance of the induced moments
is expected to increase further.
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