
Toroid moments induced in a spatial charged oscillator by a (time periodic) current density

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1995 J. Phys. A: Math. Gen. 28 4313

(http://iopscience.iop.org/0305-4470/28/15/012)

Download details:

IP Address: 171.66.16.68

The article was downloaded on 02/06/2010 at 00:35

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/28/15
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


I. Phys. A Math. Gen. 28 (1995) 431343322. Printed in the UK 

Toroid moments induced in a spatial charged oscillator by. 
a (time periodic) current density 

D H Vlad 
Department of Theoretical Physics and Mathematics, Faculty of Physics, University of Bucharest, 
PO Box MO-5211, Bucharest. Romania 

Received 7 March 1995 

Abstract The frequency-dependent toroid dipole polarizability yl=~(o) which characterizes 
the linear response of a system to a conduction and/or displacement time-dependent extemal 
cment is calculated exactly in the tridimensional charged oscillator model. no frequencies 
of resonance are obtained.~ One of them (0, = 3 ~ 1 ,  00 being the frequency of the 
oscillator) individualizes the toroid dipole polarizability since none of the other (usual) dipole 
and quadrupole electric and magnetic polarizabilities resonates at this frequency. Comparing the 
static result & (o = 0) with the static electric and magnetic quadmpole polarizabilities’one can 
see that the toroid effects appear to be of the same order of magnitude as the magnetic ones and 
that they arc very small with respect to the electric effects, but theit relative importance increases 
proportional with Ti@yl/mnc2 (mo being the mass of the oscillator). For elementary particles 
(particularly at the subhadronic level) induced toroid moments might become predominant, 

1. Introduction 

In the framework of classical electromagnetism, the discovery of a family of toroid multipole 
moments [l,  21 which are independent from the other (usual) electric and magnetic ones 
and cannot be reduced to those [ 1,2] was of special importance. The toroid dipole moment 
(known in the field of elementary particles as Zeldovich’s ‘anapole’) is the first element of 
this family. The toroid moments are currently being studied in a variety of contexts [1-8]. 

The intrinsic toroid moments of elementary quantum systems are ruled out by invariance 
under either parity or time reversal. Consequently, the intrinsic toroid moments of .such 
objects should actually be extremely small, being determined by parity or time reversal 
violating interactions. Nevertheless, the effects related to toroid moments have been 
theoretically investigated in atomic [3] and nuclear [4] physics. In connection with toroid 
moments the fact that there is a class of particles, the Majorana fermions, currently occurring 
in connection with various aspects of neutrino physics (double @-decay, neutrino oscillation, 
etc) as well as in grand uni6ed and supersymmetric theories, whose possible electromagnetic 
structure is required (by CPT invariance only) to consist exclusively of toroid moments 
and distribution [SI (all other usual electric and magnetic moments and distributions are 
forbidden [ 5 ] )  must be mentioned. 

While the intrinsic toroid moments of elementary quantum systems are ruled out by the 
discrete symmetries, in general there is nothing to prevent the appearance in such systems 
of induced toroid moments and distribution when extemal fields are present [6]. The size 
of such induced toroid moments is measured by toroid polarizabilities r6-81. 
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2. Interaction of the toroid dipole moment with the external field 

When a system of charges and currents (specified by p ( r ,  t )  and j(r, t)) interacts with the 
external electromagnetic field Em, Hat described by the potentials t ) ,  Aex'(r, t ) ,  
in the interaction energy 

p ( r ,  t)$m(r, t) d3r - - j(r, t)Aex'(r, t )  d3r (1) 
C ' S  

alongside the usual electric and magnetic dipole and higher multipole contributions, there 
are also contributions from the interaction of the toroid moments with the external field 
[1,2]. The toroid dipole term is [1,2] 

w(t)Toroid dipole = --T(t)[V x HU'(T, t) l~=O.t 

-T(~)[(~z/c)F(T, i) + (I/c)P'(T, t)~v=o.r (2) 

where J"(r, t )  and (4z)-lbat(~, t) are the external conduction and displacement currents, 
and 

~ ( t )  = ~ (?lr . j(r, t)i - zr2j(., t ) )  d3r (3) ' S  
is the toroid dipole moment [2]. 

In the quantum case, as a result of the particular interaction from equation (2). according 
to the weli known non-stationary perturbation rules, a toroid dipole moment (characterized 
by close toroidal or eight-lie currents) will be induced in the system [6] (irrespective of 
whether or not the system possesses a non-zero intrinsic one). It has the following Fourier 
components: 

where $(U) is the dynamic (i.e. frequency, o dependent) toroid dipole polarizability [6] 
(see also [7]) of the quantum system (on the arbitrary state ] p )  of E,, energy): 

y.p(w) = i e'%(t)(p][T(t), q(O) ] lp )  dt 
If s 

(the sum extends over the entire unperturbed spectrum whether discrete or continuous, E, 
being the eigenvalues of the unperturbed Hamiltonian). 

As shown in [6] the toroid polarizabilities cannot be reexpressed in terms of the usual 
electric and magnetic multipole polarizabilities, so they are new, independent characteristics 
of the system. 

The purpose of this paper is to compare the toroid dipole polarizability of a quantum 
system assumed to have an energy spectrum of a tridimensional harmonic oscillator (since 
this is the most used model in theoretical physics) with the other electric and magnetic 
polarizabilities which have the same dimensions and are involved with the same importance 
in the description of many different effects (such as Compton scattering and van der Waals 
forces). 
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3. MdimensionaI charged oscillator in an external field configuration with V x Hea 
homogeneous 

The non-relativistic quantum mechanical Hamiltonian describing the interaction of a spatial 
charged oscillator with an external field configuration for which V x Ne“ is homogeneous 
in space (T independent) but generally time-dependent has the form: 

where P = -3V and q ,  mo denote the charge and the mass of the oscillator, while the 
vector potential Ac7)(r, t )  is chosen to be as in [9] (see also [7]): 

A ~ ) ( T ,  t )  = (l/lo)(xixj - 2rZsij)[v x ~ ~ ~ ‘ ( t ) ] ~ .  (7) 

(8) 

The Hamiltonian from equation (6) can be expressed in the form 

n(t) = Z O  f %Toroid dipole(t) + ‘HL(f) .. ~~ 

with 

X, is the unperturbed Hamiltonian for the harmonic oscillator. XTmoid dipole and 7 - l ~  (a 
Langevin-type interaction, arising from the term quadratic in A(=) and representing a toroid 
analogue [9] of the usual part of the Hamiltonian responsible for the Langevin diamagnetism) 
may be viewed as perturbations. In equation (10) the one-particle operator for the toroid 
dipole moment, from equation (3) is [2] 

while in equation (10) Jgh denotes the total external current (external conduction and 
displacement currents). 

The exact calculus of the toroid dipole polarizability from equation (5) in the case of 
an anisotropic charged tridimensional oscillator in an arbitrary state described by quantum 
numbers (P I  p ~ p 3 ) ,  corresponding to the energy level 

E p j p i p i  ( P I  + 1 / 2 ) R ~  + (Pz + 1/2)flw2 + ( P S  + 1/2)fiW (13) 
together with paaicular forms of this polarizability will be presented in detail elsewhere 
[lo]. For an isotropic oscillator 
(01 = wz = w )  = wg) the expression for y<pz”3(w) is ( y ~ p 2 p p ( w )  and y&”’2pI(w) can 
be obtained from y:pzn(w) by circular permutation of the indices 1, 2, 3) 

The non-diagonal elements of yEpZp’(w) vanish. 
def 

with E; = pi  + 112. 
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The components of the frequency-dependent vector amplitude of the toroid dipole 
moment induced in the oscillator Ti"*sed will be given by 

3(16$ + 4ck E: + 1 6 ~ ~ ;  + 21) 
go; - 0' 

] (V x He*)[ 

T,i"duced , (0) = 

64~'  + 8 0 ~ ~ :  - 96$ - 36 Ck E: - 53 
oo" - 0 2  

+ 
with E = €1 + € 2  + €3. 

The scalar toroid dipole polarizability 

(15) 

takes on the following form: 

1. (17) 
3(16G2 + 28 E: + 63) 272~' - 204ck - 159 

U; - 0 2  
Y M  P I P I P y o )  = + 
For o = 0 the dynamic tensor and scalat toroid dipole polarizabilities turn in their 
correspondent static expressions: 

These results can be particularized for a ground-state oscillator (pl = p~ = p3 = 0). 
Because of the spherical symmetry 

(20) WO ~iY(o) = ~ r - 1  ( O V i k  

and the dynamic toroid dipole polarizability of the ground-state oscillator from equation (17) 
is 

The static value has the simple form: 

The Langevin-type part of the interaction Hamiltonian 7& from equation (11) resfxicted 
to the case in which V x He* is not only homogeneous but also constant in time 
[(V x induces the energy shift 

AEp = (Pl'WP) 

. . .  
(23) 
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one finds the following Langevin-type contribution to the toroid dipole tensor polarizability 
(whose non-zero components are only the diagonal ones) and to the corresponding scalar 
one: 

 while the 'contact' (Langevin-type) part of the toroid dipole moment induced as a result of 
interaction in equation (1 1) is: 

T ~ J ~ ~  = -aq,/a[(v x ~ e * ) ( c ) l ~  = y$plmpy(v ~ - t ) ( c ) ] ~ .  (27) 

For a (spherical symmetric) ground-state equation (26) turns into 

The total toroid dipole moment induced in the oscillator will be given by the sum of 
the moments induced as a result of the perturbations in equations (IO) and (11). For a time- 
independent external perturbation it is characterized by the total toroid dipole polarizability 

For pi = p z  = p j  = 0 (ground-state oscillator) 

4, Comparison between induced toroid effects and the usual electric and magnetic 
ones 

In connection with the elastic scattering of low-energy photons on an arbitrary system 
(Compton scattering), as shown in [6,8] (see also [7]), unlike the usual (static) electric and 
magnetic dipole (1 = 1) polarizabilities (YI=I(W = 0) and &l(o = 0) which establish the 
angular smchue of the amplitude to the second order in the light frequency o, the  static^ 
toroid dipole polarizability yr=l(w = 0) enters only at the beginning with the next relevant 
(fourth) o order together with the usual (also static) electric and magnetic quadrupole 
polarizabilities cu14w = 0), pI&(w = 0) and the derivative of the usual (dynamic) electric 
dipole polarizability cuf,l!(o = 0) = [daf=l(o)/dm'],,o and also with the Langevin-type 
(contact) magnetic and toroid polarizabilities. 

For comparison we give the expressions for the electric and magnetic polarizabilities 
of the same quantum system we used to obtain the toroid polarizability (i.e. the charged 
tridimensional oscillator) maintaining the same notation we used previously. 
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The dynamic electric dipole and quadrupole polarizabilities for an arbitrary quantum 
system whose energy spectrum is that of a tridimensional oscillator are: 

The low-frequency limit gives the static electric dipole and quadrupole polarizabilities 

w2 
cz 1-1 

and the derivative of the dynamic electric dipole polarizability: 

(34) a f y y w )  = a f y y o  = 0) + - a y J ~ P ~ / ( w  = 0) + . . . 

P i R P l  q2h€ 
af=2 (w =O) = - 

2m50; ’ (37) 

The dynamic magnetic dipole polarizability for the isotropic oscillator @!$Pf(w) 
vanishes, but there is a Langevin-type one (responsible for the Langevin diamagnetism) 
which has a non-vanishing form: 

The dynamic magnetic quadrupole polarizability and the corresponding total static one 
(including the Langevin-type piece) are: 

By comparison with afLrp3(o), ais PIP2PI (a) and p , ‘ ~ ~ p 3 ( ( o )  in equations (32), (33) and 
(39) it can be seen that $?”(U) in equation (17) has an additional resonance frequency 
q,, = 300 (WO being the frequency of the oscillator). This resonance frequency can only 
appear at the beginning with the octupole polarizability in the electric case (om = 300 is a 
resonance frequency for CcI=2n+l with n 2 1). but .this polarizability does not have the same 

the square of the system’s dimension). 
So, the dynamic toroid dipole polarizability is the only one of the dipole and quadrupole 

classes of polarizabilities which has a resonance frequency ore = 300. Consequently, for an 
external field interaction whose frequency is close to 3w0 the induced toroid dipole moments 
and structure (characterized by the ability of the constituent charges of the system to move 
on eight-like orbits) become predominant over the other induced electric and magnetic 
moments. This could lead to new effects. 

In the static case a comparison between y L f p 3 ( w  = 0). a[!?” (o = O), af~p”/(w = 0) 
and p z p z p 3  (o = 0) can be made. Using equations (30). (36), (37) and (40) the following 

dimension and importance as al=2 P I P I D  (U). PIPtPt (0) and fi!!p”(w) (it contains in addition 
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exact formulae are obtained: 

T . ~ i P i m  

.~ . .. (43)~ 

For hwo f m o s  << 1 one can see that the effects due to the induced toroid moments 
appear to be very small compared with those of the corresponding usual electric ones 
(although they increase with the oscillator’s energy) and of the same order of magnitude 
as those~related to the induced quadrupole magnetic moments. The same conclusion arises 
when considering a (non-relativistic, spinless, ground-state) hydrogen-lie atom [7]. This 
could be one of the reasons why induced toroid moments have so far been disregarded in 
atomic physics. 

In the field of elementary particles physics a similar comparative analysis can be made 
considering a typical example of hadron, the (charged) pion [6,11]. (The example of the 
charged pion is not only of pure academic interest. The Compton effect on the charged pion 
has already been experimentally observed and studied and the electric dipole polarizability 
of the charged pion has been experimentally extracted in two different experiments [12].) 

In [6] an order of magnitude estimate of the static toroid dipole polarizability of a* has 
been obtained (by evaluating the Al(1270 MeV) meson resonance contribution to &(w = 
0) in terms of the~experimentally known radiative width r(A1 -+ ay) 2: 0.6 MeV) with 
the result (see also [7]) &(w = 0) N 1.2 x W5 fm’. Under the same aproximations 
it has been found [6] (see also [7]) that acl t (w = 0) 2: 0.8 x IOz5 fm5. The static 
electric and magnetic quadrupole polarizability of n* are expected to be of the order [ll] 
&(w = 0) - &(o = 0) - lo-’ fm5. It has been found that 

fi=l (0 = 0) ..5 46’ - 8 C k ~ i  - 9 
L 2  T+lp*”3(m = 0) 

- _  - 
36 46’ - 8 Ea E; - 13’ 

(44) 
Y ; , : ( w = O )  
aF:&l = 0) ay:2(w = 0) p;=;(o = 0) 

y;,:(o=O) N Y;_ : (w=O)  - 1. 

The result is in sharp contrast to the corresponding one from the atomic physics. For 
hadrons, the toroid polarizabilities (and the related effects) are expected to be of the same 
order of magnitude as the usual electric and magnetic ones (of one order of multipolarity 
higher). 

Equations (41)-(43) can provide a theoretical explanation for the conclusion [6,7] that 
the more ‘elementary’ the object is (or the higher are the characteristic excitation energies 
of the system) the better it responds to an external (conduction and/or displacement) cnrrent 
V x Ha‘ rather than to the electric Ea‘ and magnetic Hex‘ fields directly, because the 
importance of the induced toroid effects increases (in the oscillator model) with Elmo$. 

Toward smaller distances (at the subhadronic level) the induced toroid effects might 
increase further and become predominant over the usual (induced) electric ones. One 

-possible explanation may be the fact that for a classical toroidal current (of large and 
small radii of the toroidal solenoid & , ~ r ~ )  with N turns of winding and a current intensity 
I ,  the classical toroid dipole moment is [2,6] 
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where VT is the volume of the toms and n is the unit vector along the axis of the toroid. The 
induced toroid moment increases on account of the large number of turns in the winding, so 
the systems which have filiform structure (strings) could have a large toroid polarizability 
[6,71. 

Because the single possible intrinsic electromagnetic structure of the Majorana fermions 
is required to consist only of toroid moments and distribution [5], these particles would 
probably have large toroid polarizabilities just as macroscopic substances composed of polar 
molecules (i.e. molecules with an intrinsic electric dipole moment) would generally have a 
large electric polarizability [7]. For the same reason, atoms, molecules and nuclei having 
inhinsic toroid moments (as those in [3,4]) could possess important toroid polarizabilities. 

5. Temperature’s influence on the induced toroid effects 

If the oscillator is in thermodynamic equilibrium, the mean toroid dipole polarizabilities can 
be calculated with the Gibbs distribution. The result for the dynamic polarizability, from 
equation (17), has the following dependence on the system’s temperature (T): 

(46) 1 3(3coth2fiwo/2kT + 1) 17coth2fi%/2kT - 7  
CO; - w2 

+ 
160m~c2 9 .4  - o 2  - q2A2 [ n=l(o) = 

(k denotes Boltzmann’s constant). For o = 0 the static form of the mean toroid dipole 
polarizability is obtained 

. .  
Adding the mean Langevin-type contribution obtained from equation (26), 

at y~=, (o = 0) from equation (47) one gets the mean toroid dipole polarizability: 

(49) 
T q2A2 

&l (o=O)=-  24mic20i’ 

It can be seen that y,zl (o = 0) has no dependence on temperature and the mean total 
toroid dipole moment induced in the system by an external field configuration which is 
constant in time has no classical analogue. 

For a time-dependent external interaction (w # 0) and for a temperature T >> Awolk 
equation (46) may be written in a form that cancels the fi2 factor and permits a classical 
interpretation: 

A comparison with the other dynamic electric and magnetic polarizabilities can also 
be made. Since q=1(o) has no dependence on the quantum numbers p1. p2,  ps it has 
no dependence on temperature either. The (dynamic) electric and magnetic quadrupole 
polarizabilities have the following mean values: 
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For T >> ftoo/k equations (51) and (52) turn into 

4321 

So, from equations (50)  and^ (53). even if the (time-dependent) induced toroid dipole 
moments are smaller than the quadrupole electric ones, their relative importance, however, 
increases with T. Comparing the dynamic toroid effects with the quadrupole magnetic ones 
in equation (54) one can see that they have the same temperature dependence.' 

Analysing equations (50), (53) and (54) one can see that the mean polarizabilities 
maintain the same resonance frequencies as those which characterize an arbitrary state 
system, in equations (17), (33) and (39). 

For a static external field, a comparison between induced toroid, electric q d  magnetic 
effects leads to 

6. Conclusions 

Although the induced static toroid effects can hardly he highlighted in atomic and solid 
state physics (this could be one of the reasons for neglecting the toroid moments in these 
domains), the dynamic ones can be observed on account of their different dependence on 
the external field frequency (in the charged oscillator model an additional specific resonance 
frequency appears). 

cm) the static toroid polarizabilities are generally 
negligible quan,tities, for hadrons (length scale cm) they can no longer be neglected as 
one expects them to be of the same order of magnitude as  the corresponding usual electric 
and magnetic ones. For more 'elementary' objects the importance of the induced moments 
is expected to increase further. 

Acknowledgments 

The author is indebted to Professor E E Radescu for an introduction to the field of toroid 
moments and for help, advice and patience. 

While for atoms (length scale 

References 

111 Zel'dovich Ya B 1957 Zk Ucp.  Teor. Fiz  33 1531 (Engl. Transl. 1958 Sov. Phy-JETP 6 1184) 
121 Dubovik V M and Tcheshkov A A 1974 Fk. Elem. ClurrrirF At. I d r a  5 791 &gl. Transl. Sov. 3. P m t  N u d  

Dubovik V M and TosuNan L A 1983 Fiz Elem. Chartits At. Yndra 14 1193 (End.' Tmsl. 1983 Suv. 
5 318) 

PhyS.-JETP 14 504) 
Dubovik V M and Tugushev V V 1990 Phys. Rep. 187 145 



4322 D H Wad 

[3] Khriplovich I B 1991 Parity Nonconrewation in Atomic Phenomena (New York. Gordon and Breach) eh 8 
Ape&o S M and Lamvik Y E 1982 J. Phyx. 8: At. MOL Phys. 15 U7 
Khriplovich I B and Pospelov M E 1990 2 Phy,?. D 17 81 
Boston E R  and San& P 0 H 1990 J. Phys. B: At. Mol. Opt. Phys. 23 2663 
Lewis R R 1993 Phys. Rev. A 48 4107; 1994 Phys. Rev. A 49 3376 

[4] Flambaum V V and Khriplovich I B 1980 2. Ekp.  Teor. Fir. 79 1656 (Engl. Transl. Sov. Phys.-JETP 52 

Sushkov 0 P, Flambaum V V and Khciplovich I B 1984 Zh. Ekrp. Eor. Fiz  87 1521 (Engl. Transl. Sov. 

Flambaum V V, Khriplovich I B and Sushkov 0 P 1984 Phys. Len. 146B 367; 1986 Phys. Lett. 162B 213; 

Haxmn W C, Henley E M  and Musolf M J I989 Phys. Rev. Lett. 63 949 

835) 

Phys.-JETP 60 873) 

1986 Nuel. Phys. A 449 750 

[SI Radescu E E 1985 Phys. Rrv. D 32 1266 
[6] Radescu E E 1985 JointINfirutc forNuclenrResenrch Dvbm Communicufion E4-85-165 unpublished; 1985 

Join? Imtirute for Nuclear Research. Dubna Renon P4-85-154. P4-85-155. P4-85-156 (1986 Rev. Roum. 
Phy.v.31 139,-143. 145) 

171 Correscu A and Radescu E E 1987 Phvs. Rev. D 35 3496: 1991 AM. Phvs.. NY 209 13 
i8j Radescu E E Prepdnr 1CTF'. Triesre IU90/315, IU90/319 unpublished 
[91 Radescu E E unpublished 

[iOj Vlad D H unpublished 
1111 Cuiasu I and Radescu E E 1979 ANI. Phvs.. NY 120 145; 1979 Am. Phvs.. NY 122 436: 1982 Phvs. Rev. . _  

D 25 1455 
Guiasu I. Pomvoniu C and Radescu E E 1978 Ann. Phvw, NY 114 296 
RadescuE E i978 Phys. Rev. D 18 2329 
Filkov L V, Guiasu 1 and Radescu E E 1982 Phys. Rev. D 26 3146 

1121 Aibergenov T A et nl 1982 Krnrk Soobrhch. Fir. 5 33; 1984 Krark Saobshch F ~ z .  6 31; 1986 Czech J. 
Phys. B 36 948 

Antipov Yu M er al 1983 Phyr. b f t .  121B 445 (1983); 1985 2 Phys. C 26 495 
Kowalevski R V er al 1984 Phy.7. Rev. D 29 1000 


